A 500-megawatt supercomputer is “probably too much”.
“Over the next decade, we must think of energy efficiency as the most important challenge,” Lisa Su, CEO of Advanced Micro Devices, told engineers at the 2023 IEEE International Solid State Circuits Conference (ISSCC), in San Francisco.
Despite a slowdown of Moore’s Law, other factors have pushed mainstream computing capabilities to double about every two and a half years. For supercomputers, the doubling is happening even faster. However, Su pointed out, the energy efficiency of computing has not been keeping pace, which could lead to future supercomputers that require as much as 500 megawatts a decade from now.
“That’s probably too much,” she deadpanned. “It’s on the order of what a nuclear power plant would be.” Nobody really knows how to achieve the next thousand-fold increase in supercomputer capability—zettascale supercomputers, Su said. But it will surely require improvements in system-level efficiency, meaning not just energy-efficient computing on chips but also efficient interchip communication and low-power memory access.
On the computer side, Su called attention to improvements in processor architecture, advanced packaging, and—despite the well-known slowdown—better silicon technology. That combination could more than double the industry’s historic performance-per-watt-increase rate. As an example, Su compared the MI250X accelerator GPU, which is behind four of the five most efficient supercomputers, with its predecessor, the MI100. The newer chip offers 4.2 times the performance with 2.2 times as much efficiency. Of that, chiplet design and integration accounted for nearly half the performance increase and about 30 percent of the efficiency gain.
“Probably the largest lever we’ve had recently has been the use of advanced packaging and chiplets,” she said. “It allows us to bring the components of computation together much more closely than ever before.” Three-D interconnects in chiplet-based systems can sling about 50 times the bits per joule of energy as the copper connections on the motherboard can, according to AMD. Using a technology called 3D V-cache, AMD compute chiplets now can have additional SRAM stacked atop them to expand the size of their cache.
Another energy-saving factor that Su talked about is domain specific computation, which she describes as using “the right math for the right operations.” Because 8-bit floating-point operations are about 30 times as energy efficient as 64-bit ones, makers of GPUs and other AI accelerator chips have been seeking ways to use such lower-precision operations wherever they can. Domain-specific architecture accounted for about 40 percent of the MI250X’s performance and efficiency improvements.
AMD is hoping to get another eightfold performance improvement and a fivefold efficiency gain from its next generation, the MI300.
But processor innovation in itself won’t be enough to get to zetta scale supercomputing, Su said. Because AI performance and efficiency improvements are outstripping gains in the kind of high-precision math that’s dominated supercomputer physics work, the field should turn to hybrid algorithms that can leverage AI’s efficiency. For example, AI algorithms could get close to a solution quickly and efficiently, and then the gap between the AI answer and the true solution can be filled by high-precision computing.
Applied Intelligence Semiconductors Private Limited (AISemiCon), an innovative product enterprise is founded by seasoned semiconductor professionals, envisioned to deliver cutting edge products for the globe.
INDIA
Sri Rajarajeshwari Arcade,
3rd Floor, Veerannapalya, Nagavara, Bangalore - 560045
USA
#21, Rocky Hill Road, Princeton, NJ 08540 USA
MALAYSIA
B3-02-06, Plaza Sentral, Jalan Stesen Sentral 5 50470, Kuala Lumpur, Malaysia
Phone: +91 80499 09364
EMail:contactus@aisemicon.in